Low dose exposure from pediatric CT scans and cancer risk

Elisabeth Cardis and Ausrele Kesminiene

ER

le Catalunva

Centres de Recerca

Institució

SGlobal Barcelona Institute for Global Health

A partnership of:

* "la Caixa" Foundation

11

UNIVERSITAT-

BARCELONA

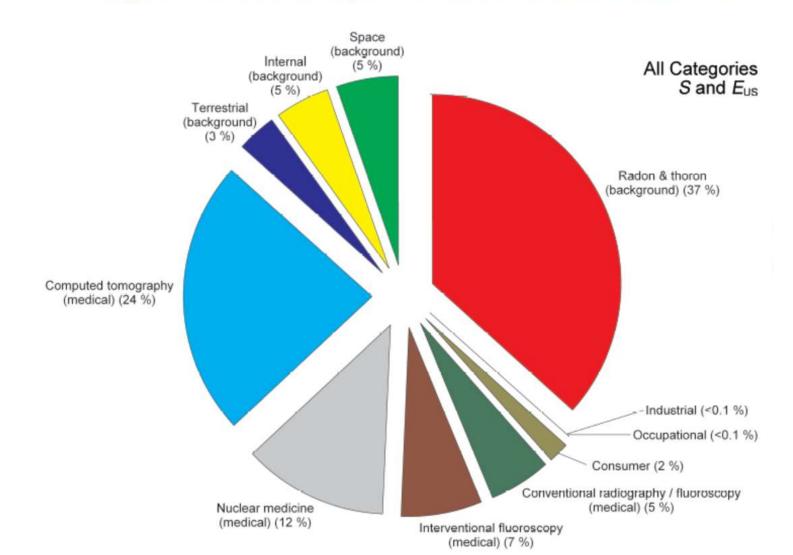
Universitat Pompeu Fabra Barcelona

bra D Gene de Ca at nya

FUNDACIÓN RAMÓN ARECES

Why are CTs of interest in radiation protection?

- Diagnostic radiation is an indispensable, sometimes life-saving, tool in modern medicine.
- But use of diagnostic X-rays and of high-dose techniques (CT, interventional procedures using X-rays) has grown dramatically in recent years
 - improvement of technology
 - more applications
 - markedly increased use
 - and increase in dose ...



Courtesy; F. Mettler, 2008

... growing radiological protection and public health concern

NCRP Report No. 160, *Ionizing Radiation Exposure of the Population of the United States*

Questions

- What is the public health impact of this increase ?
 - Brenner et al predictions from A-bomb survivors
 - But uncertainties regarding effects of low to moderate doses received in fractionated fashion
- Are there subgroups with increased sensitivity ?
- Need to optimise imaging protocols, particularly among young people ?

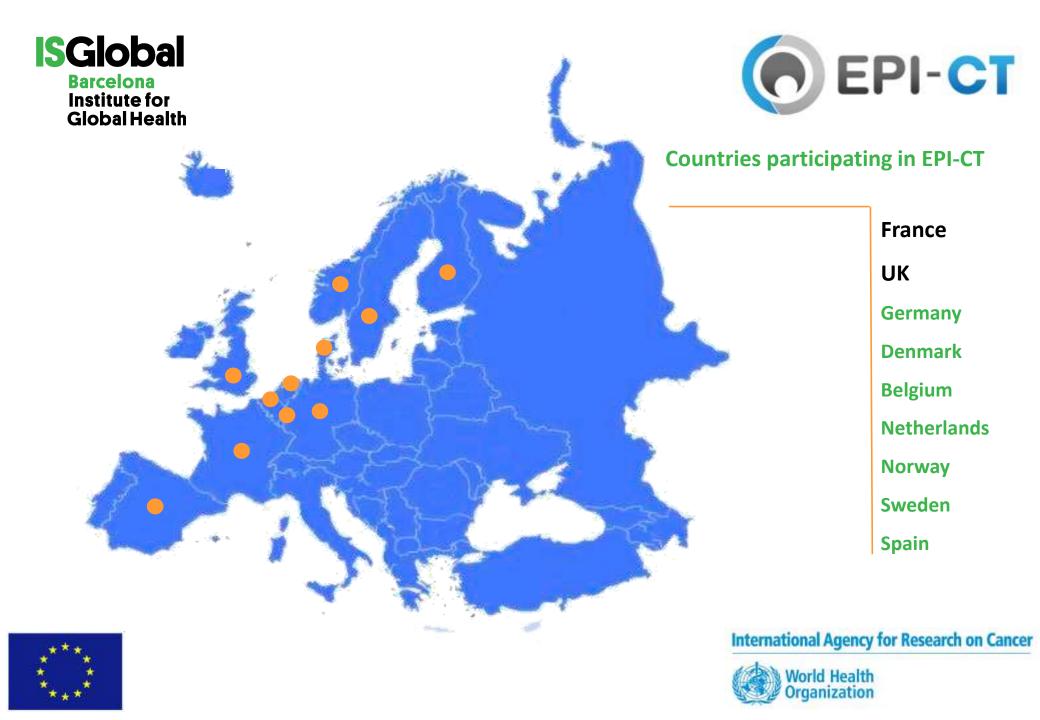
The issue of children

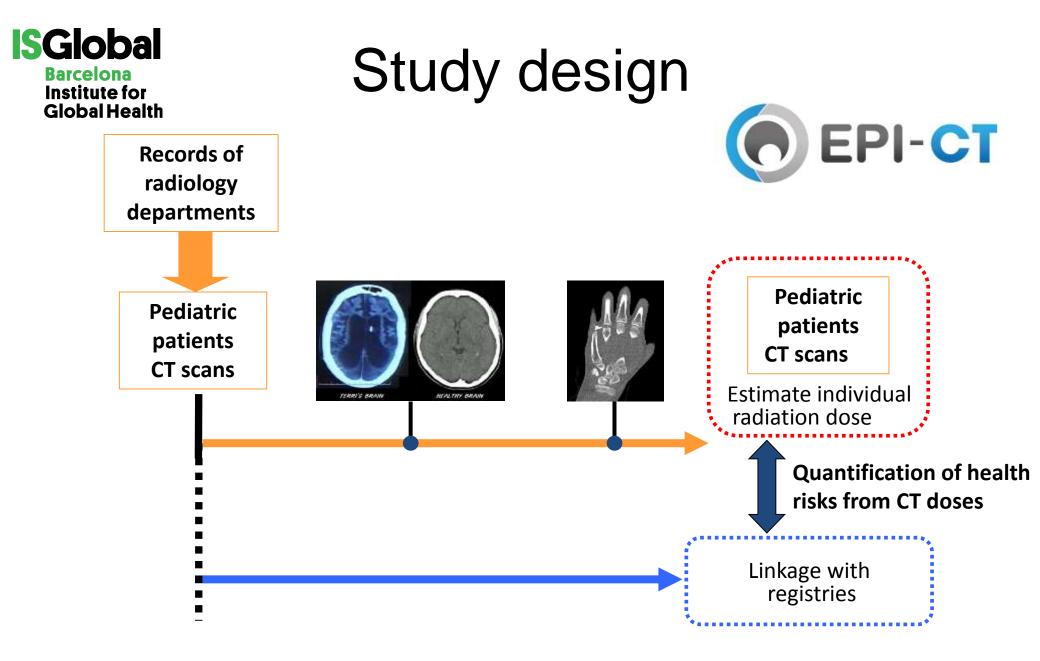
- 5-10% of all CTs in children
- Because of their smaller mass, children tend to receive higher doses to specific organs
 - doses to target organs can be of the order of a few tens of mGy per examination
 - cumulative doses may reach 100 200 mGy (or more) if procedures are repeated
 - great variability of doses and procedures not always adapted to paediatric patients
- Children have a longer life span to express any radiation-related detriment

ISGIODAI Barcelona Institute for

Studies with estimate of risk per mGy

	Population size and age range	ERR/mGy (95% CI)	
Pearce et al, 2012, Berrington et al al 2016 (UK)	178,604 CT patients 0-22 years old	Leukaemia (74 cases) 0.036 (0.005, 0.120) 0.033 (0.004, 0.114) 0.037 (0.005, 0.125) Brain tumours (135 cases) 0.023 (0.010, 0.049) 0.012 (0.004, 0.031)	 Limitations - Organ-dose Overall excluding previous cancers excluding leukaemia related cond. Overall excluding previous cancers, conditions
Matthews et al, 2013 (Australia)	680,211 CT patients 0-19 years old	Leukaemia (246 cases) 0.039 (0.014, 0.070) Brain tumours (283 cases) 0.021 (0.014, 0.029)	 Exposure misclassification Increase for all cancer types
Journy et al, 2014, 2015 (France)	67,274 patients 0-10 years old	Leukaemia (17 cases) 0.057 (-0.079, 0.193) 0.187 (NA) Brain/CNS tumours (22) 0.022 (-0.016, 0.061) 0.028 (NA)	 Short follow-up (4 years), few cases Overall excluding predisposing factors Overall excluding predisposing factors


Studies with no estimate of doserelated risk


	Population size and age range	Risk measures (95% CI)	
Ŭ,	24,418 patients with brain CTs 0-18 years old	HR compared to population in health system All cancers (39) 1.29 (0.90, 1.85) Leukaemia (8) 1.90 (0.82–4.40) Brain tumours – all (19) 2.56 (1.44–4.54) HR increased with numbers of CTs	 Short follow-up Small numbers of cases No dose estimation
Krille et al, 2015	80,000 patients 0-15 years old	1.72 (0.89–3.01) 1.79 (0.92–3.12) CNS (7 cases)	 No dose used in analysis Small numbers Overall Excluding subjects at risk Overall Excluding subjects at risk

Issues in interpreting results

- Confounding by predisposing condition
 - UK, Netherlands, France ... little evidence
 - Miglioretti US ...
- Assessment of doses
 - Very variable type of scans, machine, protocol, organ, age/size variability
 - Missing doses (CTs in other hospitals, other procedures)
- Individual sensitivity ?

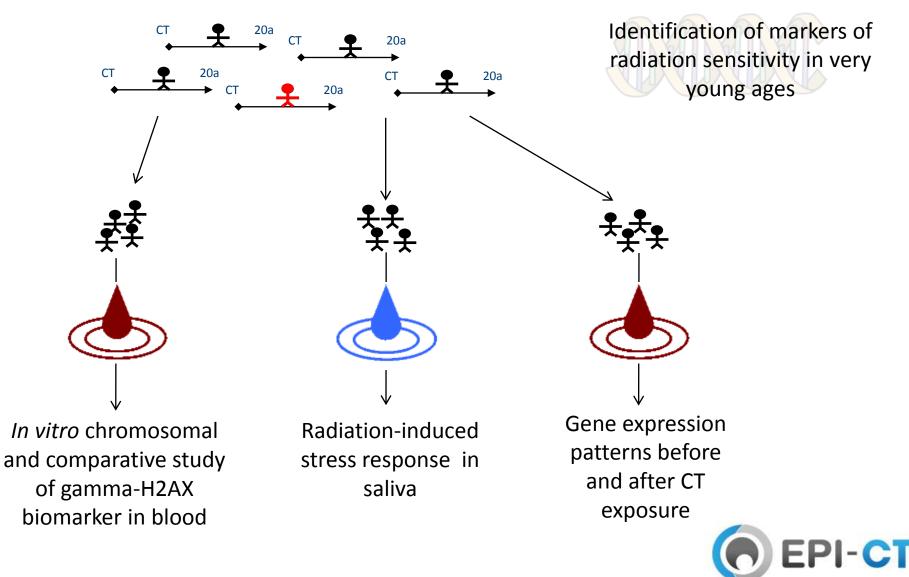
Country	Recruitment period	Age at 1 st CT	Number of patients
Belgium	2002 - 2012	0-18	14,002
Denmark	2002 - 2012	0-18	21,649
France	2000 - 2011	0-9	121,101
Germany	1983 - 2013	0-14	63,998
Netherlands	1970 - 2014	0-17	158,130
Norway	1980 - 2013	0-20	80,225
Spain	1987 - 2013	0-20	171,336
Sweden	1984 - 2013	0-17	128,699
UK	1985 - 2013	0-21	411,046
Total			1,170,186

Institute for Global Health Da

Particular attention was paid to

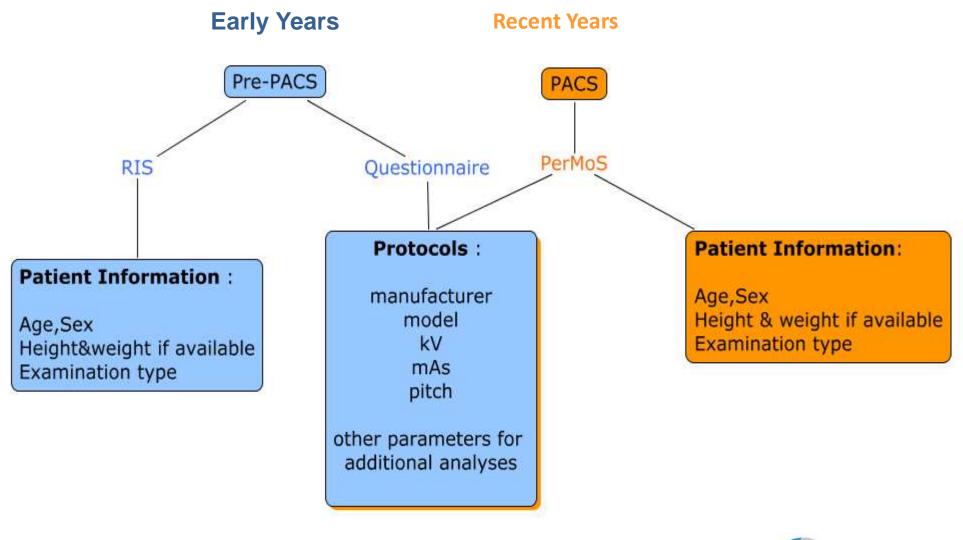
Identification and assessment of sources of bias and uncertainty:

- SES
- missing CTs
- missed doses from other procedures
- confounding by indication
- confounding by cancer susceptibility syndromes
- incomplete follow-up (mortality, emigration, ...)
- others (epidemiological surveillance)


Individual dose (and uncertainty) reconstruction

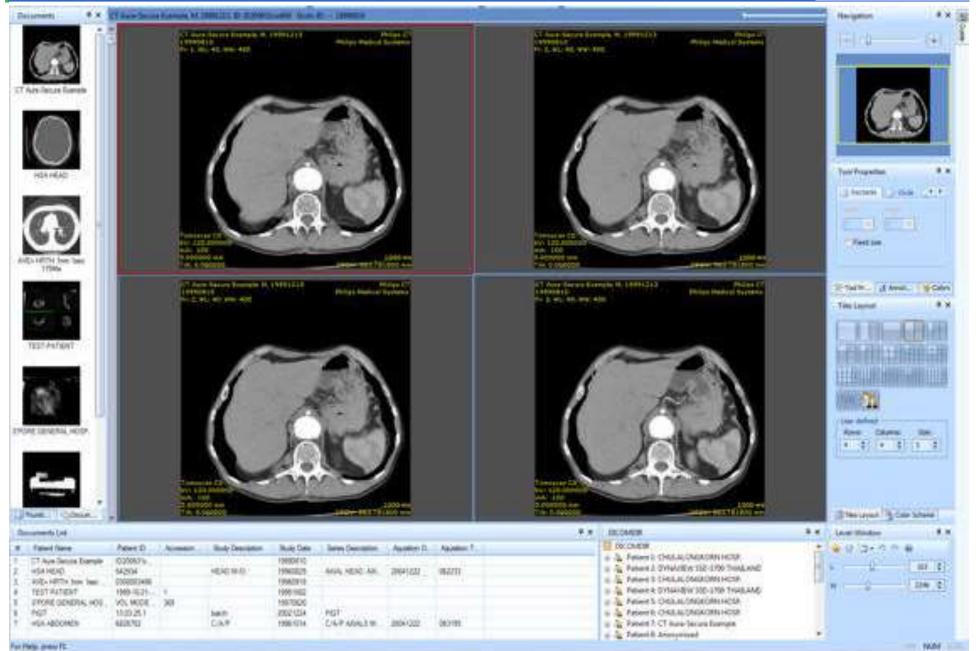
Feasibility of identifying biomarkers

Biological pilot study



Biological pilot study: some results

- Chromosomal aberrations and induction of DNA double strand breaks following CT scanning - increased in blood samples from newborns and young children when compared to adults
- Differences also visible in the γ - H_2AX -foci assay
- Currently no biomarkers that can be obtained in non-invasive way this makes difficult integration of molecular biology component in a large scale paediatric CT study


DOSE RECONSTRUCTION – AVAILABLE DATA

DICOM header

OVERALL STRATEGY FOR DOSE RECONSTRUCTION

- Analysis based on NCICT
 - To obtain an **ESTIMATION** of dose to the organs of the patients

tient parameters							Dose (mGy)
						Brain	5,562
ige <u>1-year</u>	•					Pituitary gland	4,896
						Lens	5,665
Gender 🤆 Male 🤆 F	emale		x 22 111	- Town		Eye balls	5,946
leight 77			Tignet?	A RESIDENT	/	Salivary glands	3,106
leight 77						Oral cavity	4,858
Veight 10						Spinal cord	0,372
10						Thyroid	0,729
						Esophagus	0,52
						Trachea	0,676
anner parameters				C ALLAND		Thymus	0,322
Manufacturer General Ele	ctric 👻			ALC: NO		Lungs	0,203
				K-P. A.		Breast	0,076
Nodel 8800, 9000 Series	•			- 50		Heart wall	0,156
C 11 1 Ch						Stomach wall	0,054
Head filter C Body	filter			A COLORADO		Liver	0,06
	6.2	1		Charles M		Gall bladder	0,033
CTDIw (mGy/100mAs)	012					Adrenals	0,072
						Spleen	0,071
						Pancreas	0,029
						Kidney	0,043
	1					Small intestine	0,014
ritch	1					Colon	0,014
ube potential (kVp)	120					Rectosigmoid	0,007
						Urinary bladder	0,007
Current x Time (mAs)	100					Prostate	0,003
						Uterus	0
TDIvol (mGy)	6,2					Testes	0,006
						Ovaries	0
SSDE (mGy)		General protocol	Head	-		Skin	1,168
					Dar Graph	Muscle	0,304
DLP (mGycm)	90	Scan Start (cm)	Scan End (cm)		Bar Graph	Active marrow	2,213
			15			Shallow marrow ED60	1,783

e Batch Help				
Patient parameters				
Age 5-year	•		00	
Gender 🗭 Male 🤇 Fen				
se male is ren				
Height 111		The second se	A CELES	
Weight 19				
		_	77	
Scanner parameters				
Manufacturer General Electr	ic 💌]		
Model 8800, 9000 Series		1		
	er	-		
,	6.2			Body par
nCTDIw (mGy/100mAs)		- 1		scanned
				scanneu
Pitch	1			
Tube potential (kVp)	120			V
Current x Time (mAs)	100			
CTDIvol (mGy)	6,2			
SSDE (mGy)		General protocol	Custom	•
DLP (mGycm)	6	- Scan Start (cm)	Scan End (cm)	Bar Graph

Barcelona

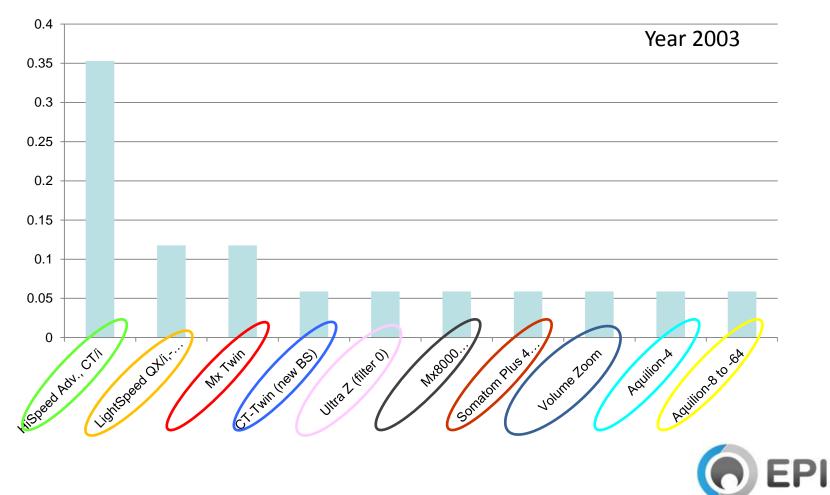
2D Monte Carlo simulation

- Provides alternative realizations of possibly true sets of doses
 - The variability of dose for subjects with similar attributes is represented within each realization of the cohort;
 - The uncertainty of dose-related model parameters is represented across all the realizations of the cohort.

Subject ID	Realization 1		1	Realization 2	Realization 3			 Realization 1000
		\frown						
1	<	U _{1,1}		D _{1,2}	D _{1,3}			D _{1,1000}
2		D _{2,1}		D _{2,2}	D _{2,3}			D _{2,1000}
3		D _{3,1}		D _{3,2}	D _{3,3}			D _{3,1000}
Ν		D _{N,1}		D _{N,2}	D _{N,3}			D _{N,1000}

• 2DMC is meant to separate uncertainties which are shared among individuals from those that are individual-specific

Example 1 – Missing questionnaires about scanner type and protocols


- Questionnaires to assess characteristics of typical protocols used over time sent to each participating hospital (by machine type, examination type and age group).
- No answer to our questionnaire for some hospitals
 - Unknown machine type (manufacturer and model)
 - Unknown protocols (kV, mAs and pitch)

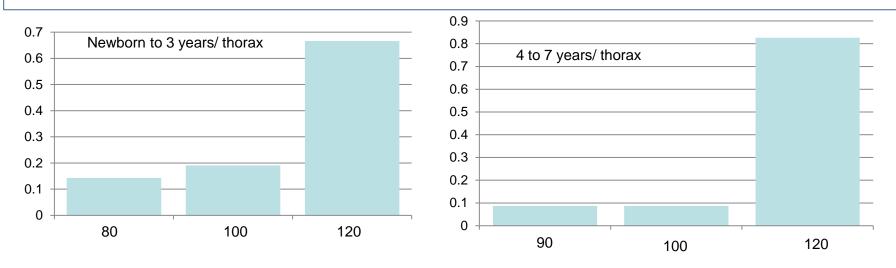
Manufacturer and models

Subjective probability density function

• we believe it represents the relative likelihood of the use of CT machines in the country

SELECTION OF MACHINE

R2 Rn R1 R3 Child 1: 2y/ Thorax Child 2: 5y/ Thorax Hospital 1 Child 3: newborn/ head Child 1: 2y/ Thorax Child 2: newborn/head Hospital 2 Child 3: 5y/ head Child 1: newborn/head Hospital 3 Child 2: newborn/thorax Child 3: 5y/ head



NEXT STEPS

- Scanner model is determined for each realization
- □ All other parameters have to be considered
 - kVp, mAs, pitch

Example: tube potential kV

Similarly for all CT machines and examination types

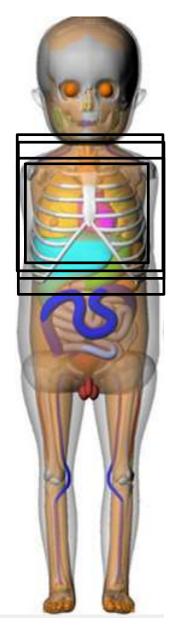
<u>кV</u>р

		R1	R2	R3		Rn
<	Child 1: 2y/ Thorax	120	80	100	>	100
	Child 2: 5y/ Thorax	100	100	120		100
Hospital 1	Child 3: newborn/ head	150	150	100		120
		L,	J	J		IJ
	Child 1: 2y/ Thorax	120	80	120		120
	Child 2: newborn/head	100	120	120		100
Hospital 2	Child 3: 5y/ head	150	120	100		100
			J	J		J
	Child 1: newborn/head	100	80	120		120
Hospital 3	Child 2: newborn/thorax	100	100	80		80
	Child 3: 5y/ head	100	140	100		100
		し、		J		L J

FIRST CASE – THORAX BOY 2 YEARS OLD

□ For each realization, we have selected kVp, mAs and pitch from the appropriate probability density functions

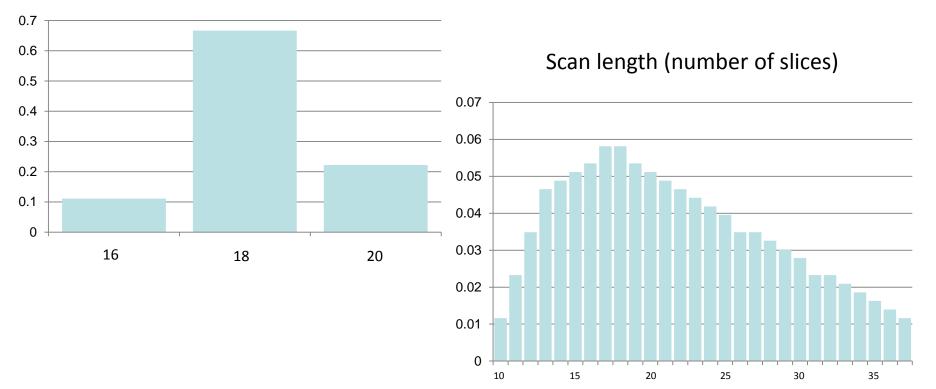
	R1	R2	R3
CT machine	GE-HiSpeed Adv., CT/i	Toshiba-Aquilion-4	GE-HiSpeed Adv., CT/i
kVp	120	80	100
mAs	160	80	200
pitch	1	1	1


Resulting organ doses (mGy)

Thyroid	20	7	25
Breast	17	6	20
Heart wall	21	7	26
RBM	8	2	8,5

Uncertainty on scanned area not taken into account

EXAMPLE 2- SCANNED AREA UNCERTAIN


- The exposed part of the body assessed based on
 - Type of examination
 - EU classification using 7 body regions divided into body part and specific organs
 - Expert judgment on scan position (uncertainty assessed)
 - Analysis of mathematical descriptions of contours of the organs (for recent years)
 - Segmentation of the image for the HU (Hounsfield Unit) of bone, soft tissue and air, separately during data collection
 - Only segmented outlines are transferred to the database without collection of images

Probability density functions

Landmark (phantom slice number) – Start

CT machine	R1 GE-HiSpeed Adv., C	T/i	Organ doses (<u>MGY)</u>
kVp	120			
mAs	160			
pitch	1			
Thyroid	20	9	23	5
Breast	17	17	17	16.5
Heart wall	21	21	22	20
RBM	8	7.5	8	6

Where are we ?

Data collection:

- Cohort accruement finished EXPOSURE data
- Cancer and mortality data (finished) OUTCOME data
- SES data, rare disease appraisal finished CONFOUNDING data

Dose reconstruction:

- Dose reconstruction with uncertainty completed
- Last validations underway
- Final product: 500 realisations of doses

Analyses completed:



- Risk projection of radiation-related cancer for several sites (Germany, Spain, UK)
- Relation between CT scanning and SES (Netherlands, Spain, UK, Germany)
- Possible effect of cancer predisposing syndromes (France, Netherlands)
- Confounding by indication

Descriptive results

Where are we?

- Person years of follow-up
- Median duration of follow-up
- Number of deaths
- Age at first CT:
- Mean age at first CT
- Average number of CT per subject
- % of patients with >= 5 CTs 5%

~1 003 700 *(>1 year of follow-up)* ~ 9 500 000 ~9.5 years ~12 000 0-21 *(depends on country)* 10.8 ct 1.5

PRELIMINARY !

EPI-CT

Where are we ?

Analyses underway

- Estimates of leukemia and brain tumour risk and CT scan in Europe
- Simulations of impact of sources of bias on study results
- Modelling of impact of dosimetric uncertainty
- Timing first draft result paper January 2018

Next step

POSTER 147

- Nested case-control study leukaemia, brain tumours (WP5)*
 - Questionnaire and medical records
 - Information about other CTs
 - Information about other procedures
 - Medical history previous cancers, predisposing factors
 - Improve dosimetry (antropomorphic parameters, technical parameters)
 - Biological samples (saliva)
 - Genetic and epigenetic factors which may modify individual susceptibility

*involves contact with study subjects - subject to ethics approval and informed consent

Institute for Global Health

Thank you!

www.isglobal.org

A partnership of:

💥 <u>"la Caixa" Foundation</u>

BARCELONA upf.

FUNDACIÓN RAMÓN ARECES